Solution and Solid-State Molecular Structures of $Me_2Sn(OAc)_2$ (I) and Its Hydrolyzate, $([Me_2Sn(OAc)]_2O)_2$ (II), by Solution and Solid-State ¹³C NMR. X-ray Diffraction Study of II

Thomas P. Lockhart, *1a,b William F. Manders, *1a and Elizabeth M. Holt*1c

Contribution from the National Bureau of Standards, Gaithersburg, Maryland 20899, and Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078. Received August 12, 1985

Abstract: On the basis of solution and solid-state ¹³C NMR and other published data, Me₂Sn(OAc)₂ is believed to be monomeric and to adopt a highly distorted trans-dimethyl octahedral conformation in both phases. The Me-Sn-Me angle is estimated from ¹³C and ¹H NMR data [solid-state and solution $|{}^{1}J({}^{119}Sn, {}^{13}C)| = 665$ Hz; solution $|{}^{2}J({}^{119}Sn, {}^{1}H)| = 82.5$ Hz] to be ca. 135°. Evidence from solid-state ¹³C NMR for the existence of a second crystalline modification of a second crystalline modification of Me₂Sn(OAc)₂ is presented. Analyses of solid-state or solution ¹³C NMR data for Bu₂Sn(OAc)₂, Me₂Sn(benzoate)₂, and Me₂Sn(laurate)₂ indicate closely related structures. ([Me₂Sn(OAc)]₂O)₂, Sn₄O₁₀C₁₆H₃₆, crystallizes in space group Pa with a = 16.386 (5) Å, b = 7.780 (2) Å, c = 11.183 (5) Å, $\alpha = \gamma = 90.0^{\circ}$, $\beta = 103.61$ (3)°, and Z = 2 (data measured at 27 °C); R refined to 4.7% ($R_w = 5.4\%$). The distannoxane forms tightly bonded dimeric units with a central Sn₂O₂ ring; an overall polymeric structure arises from an additional bonding interaction ($D_{Sn-O} = 2.56$ (1) Å) between an exocyclic tin and a carboxylate oxygen of adjacent dimers. Unlike other characterized dicarboxylato tetraorganodistannoxanes, no center of symmetry was found for $([Me_2Sn(OAc)]_2O)_2$. Solution ¹³C and ¹H NMR spectra indicate the presence of two types of tin (endocyclic and exocyclic to the Sn₂O₂ ring) in the dimer in solution, both of which are hexacoordinated and adopt distorted trans-dimethyl octahedral conformations (Me-Sn-Me angles of ca. 145° and 141°, respectively).

In spite of the wide application of diorganotin dicarboxylates as catalysts and stabilizers,² little is known about their molecular structures. Previous IR,³ NMR,³⁻⁵ and Mössbauer⁶ spectroscopic investigations have led to conflicting structural proposals. Unresolved issues include the molecularity of diorganotin dicarboxylates, the relative importance of carboxylate bridging between tin atoms of adjacent molecules in solution and the solid state, and the tin coordination number (CN). The hydrolytic instability of the parent diorganotin dicarboxylate, dimethyltin diacetate [Me₂Sn(OAc)₂],^{3a} and other simple diorganotin dicarboxylates has hindered structural investigations. X-ray structures have been determined⁷⁻¹⁰ for several di-

carboxylato tetraorganodistannoxanes, [R2(OAc)Sn]2O, the first isolable products of the hydrolysis of diorganotin dicarboxylates. In common with other difunctional tetraorganodistannoxanes,¹¹ $R_2(X)SnOSn(Y)R_2$ (1: X, Y = halide, hydroxide, Me₃SiO, NCS), they associate as dimers in the solid state, forming fourmembered Sn_2O_2 rings through interaction of the tin of one distannoxane with the oxide linkage of a second. Bridging of the

- (3) (a) Maeda, Y.; Dillard, C. R.; Okawara, R. Inorg. Nucl. Chem. Lett. 1966, 2, 197. (b) Maeda, Y.; Okawara, R. J. Organomet. Chem. 1967, 10, 247
- (4) Mitchell, T. N. J. Organomet. Chem. 1973, 59, 189. (5) Otera, J.; Hinoishi, T.; Kawabe, Y.; Okawara, R. Chem. Lett. 1981, 273
- (6) Maddock, A. G.; Platt, R. H. J. Chem. Soc. A 1971, 1191.
- (7) Valle, G.; Peruzzo, V.; Tagliavini, G.; Ganis, P. J. Organomet. Chem. 1984, 276, 325.

(8) Faggiani, R.; Johnson, J. P.; Brown, I. D.; Birchall, T. Acta Crystallogr. 1978, B34, 3743. (9) Garner, C. D.; Hughes, B.; King, T. J. Inorg. Nucl. Chem. Lett. 1976,

12, 859.

(10) Graziani, R.; Bombieri, G.; Forsellini, E.; Furlan, P.; Peruzzo, V.;

(10) Graziani, R.; Bombieri, G.; Forsellini, E.; Furlan, P.; Peruzzo, V.;
Tagliavini, G. J. Organomet. Chem. 1977, 125, 43.
(11) Okawara, R.; Wada, M. Adv. Organomet. Chem. 1967, 5, 164.
Chow, Y. M. Inorg. Chem. 1971, 10, 673. Harrison, P. G.; Begley, M. J.;
Molloy, K. C. J. Organomet. Chem. 1980, 186, 213. Graziani, R.; Casellato,
U.; Plazzogna, G. Acta Crystallogr. 1983, C39, 1188. Dakternieks, D.; Gable,
R. W.; Hoskins, B. F. Inorg. Chim. Acta 1984, L43. Vollano, J. F.; Day, R.
O.; Holmes, R. R. Organometalics 1984, 3, 745. Puff, H.; Friedrichs, E.;
Visel, F. Z. Anorg. Allg. Chem. 1981, 477, 50. Matsuda, H.; Kashiwa, A.;
Matsuda, S.; Kasai, N.; Jitsumori, K. J. Organomet. Chem. 1972, 34, 341.

electronegative substituents (X,Y), as shown for 1, leads to an increase in the CN of the exocyclic diorganotin(IV) moieties to 5 (or more), and the resulting structures have been referred to as "ladders" or "staircases" depending on their planarity. For

some dicarboxylato tetraorganodistannoxanes, additional bonding interactions between adjacent dimers in the crystalline state have been found^{7,8} and produce an overall linear polymeric structure. While the dimeric nature of dicarboxylato tetraorganodistannoxanes is preserved in solution, there are substantial, but poorly characterized,^{3b} structural changes relative to the solid state.

The unusual structural features identified for some dicarboxylato tetraorganodistannoxanes and the lack of a clear structural picture for diorganotin dicarboxylates have led us to examine the structures of the parent diorganotin dicarboxylate, $Me_2Sn(OAc)_2$, and its hydrolysis product, $([Me_2Sn(OAc)]_2O)_2$. In this study we report new ¹³C NMR data that provide considerable insight into their molecular structures in solution and the solid state. The X-ray structure of $([Me_2Sn(OAc)]_2O)_2$ is also described.

Results and Discussion

Our structural analyses of Me₂Sn(OAc)₂ and ([Me₂Sn-(OAc)]₂O)₂ make use of two new NMR/structure relationships: (1) Solid-state ¹³C NMR studies of structurally characterized, crystalline methyltin(IV) compounds have revealed¹² that the magnitude of tin-carbon J coupling, $|^{1}J(^{119}Sn,^{13}C)|$ ($|^{1}J|$), is linearly related to the Me-Sn-Me angle (eq 1; where θ is the Me-Sn-Me angle, in deg, and $|^{1}J|$ is in Hz) for a variety of methyltin(IV) compounds.

$$|^{1}J| = 11.4(\theta) - 875 \tag{1}$$

(2) A second study has shown¹³ that the magnitude of tin-hy-

^{(1) (}a) National Bureau of Standards-National Research Council Associate, 1983-1985. (b) Present address: E. I. du Pont de Nemours and C Central Research and Development, Experimental Station, Wilmington, DE 19898. (c) Oklahoma State University.

⁽²⁾ Evans, C. J.; Karpel, S. J. Organomet. Chem. Libr. 1985, 16, Chapters 2 and 3.

⁽¹²⁾ Lockhart, T. P.; Manders, W. F.; Zuckerman, J. J. J. Am. Chem. Soc. 1985, 107, 4546.

Table I.	¹ H and	¹³ C NMR Data f	for $Me_2Sn(OAc)_2$,	$Me_2Sn(laurate)_2$, and	$[Me_2Sn(OAc)]_2O$

		Me ₂ Sn chem	ical shift,ª ppm			estim ∠Me–s (deg)	ated ^d Sn-Me from
compound	medium	¹³ C	¹ H ^b	¹ Л, ^{<i>b</i>} Нz	² <i>J</i>], ^c Hz	$ ^{1}J $	$ ^2J $
$Me_2Sn(OAc)_2$	solution	$3.7 (C_6 D_6)$	0.91 (CCl ₄)	665	82.5	135	134
	solid state	3.8		665		135	
Me ₂ Sn(laurate),	solid state	5.2		720		140	
[Me ₂ Sn(OAc)] ₂ O	solution	5.9	0.80	748	86.8	142	140
	$(CDCl_3)$	8.7	0.82	800	89.0	147	143
	solid state	7.7-15.9		е			

^a Relative to Me₄Si (0 ppm) in solution, Delrin (89.1 ppm) in solid state. ^bUncertainty in solid-state |¹J| values is ca. 10 Hz, 3 Hz in solution. ^c Data from ref 3. ^d Calculated by using eq 1 or 2. Believed accurate to within 5^o [see ref 12 and 13]. ^eNot resolved.

drogen J coupling, $|{}^{2}J({}^{119}Sn, {}^{1}H)|$ ($|{}^{2}J|$), is also related to the Me-Sn-Me angle according to the quadratic expression in eq 2.

$$\theta = (0.0161)(|^2J|)^2 - (1.32)(|^2J|) + 133.4$$
(2)

These relationships provide a simple method for estimating, with reasonable accuracy (within about 5°), Me-Sn-Me angles of crystalline¹⁴ or amorphous¹⁵ methyltin(IV) solids. They also allow estimates to be made of the solution structures of methyltin(IV) compounds from ¹H and ¹³C NMR measurements and provide an important tool for comparing molecular structures in the solid state and solution.

Solid-State and Solution Structure of Me₂Sn(OAc)₂. From cryoscopic molecular weight measurements, Okawara and coworkers^{3b} determined that $Me_2Sn(OAc)_2$ is monomeric in benzene solution. In the solution IR spectrum both symmetric and antisymmetric SnC₂ stretching bands were identified and Me₂Sn-(OAc)₂ was suggested to have a nonlinear Me-Sn-Me moiety. The CO₂ antisymmetric stretching frequency at 1600 cm⁻¹ was taken to indicate bidentate acetate ligands and distored octahedral coordination at tin (2). The appearance of an additional CO_2 antisymmetric stretching band (1560 cm⁻¹) in the crystalline film was interpreted³ as reflecting a change to a polymeric structure (3) in which the tin atoms are linked via bridging acetate groups.

Given the extreme moisture sensitivity of Me₂Sn(OAc)₂, however, it is conceivable that the new CO_2 band in the crystalline film is due to formation of the hydrolysis product, $([Me_2Sn(OAc)]_2O)_2$ $[\nu(CO) = 1560 \text{ cm}^{-1}]$, a possibility the authors do not address.

A different structural interpretation was given to the solution ¹³C NMR data for *n*-Bu₂Sn(OAc)₂ (4).⁴ The small $|^{1}J|$ value of neat $n-Bu_2Sn(OAc)_2$ (630 Hz) compared to that of $n-Bu_2Sn-$ (acetylacetonate)₂ (914 Hz), which adopts a trans-dibutyl octahedral configuration, was taken to indicate a tin CN of 5 rather than 6. This interpretation conflicts with the observation of

Okawara^{3a} that $|^{2}J|$ of Me₂Sn(OAc)₂ is essentially the same in 20% CCl₄ solution (82.5 Hz), where it is monomeric, and in the neat liquid at 85 °C (81.7 Hz). The recent observations^{12,13} that $|^{1}J|$ and $|^{2}J|$ depend strongly on the Me-Sn-Me angle provide an

Figure 1. Solid-state ¹³C NMR spectra of polycrystalline Me₂Sn(OAc)₂ (bottom) and ([Me₂Sn(OAc)]₂O)₂ (top) at 15.08 MHz.

alternate explanation for the relatively small $|^{1}J|$ value observed for *n*-Bu₂Sn(OAc)₂: the difference $|^{1}J|$ between *n*-Bu₂Sn(OAc)₂ and n-Bu₂Sn(acetylacetonate)₂ may simply reflect a smaller C-Sn-C angle in the diacetate.

We have obtained solid-state and solution ¹³C NMR data for $Me_2Sn(OAc)_2$ and solid-state NMR data for $Me_2Sn(laurate)_2$ (Table I, Figure 1). By eq 1, $|^{1}J|$ for Me₂Sn(OAc)₂ in solution (665 Hz) corresponds to an Me-Sn-Me angle of 135°. Essentially the same angle (134°) is obtained with eq 2 and the $|^2J|$ reported by Okawara.³ Taken with the determination by cryoscopic measurements^{3b} that Me₂Sn(OAc)₂ is monomeric in solution and the IR data which indicate bidentate acetate ligands, the NMR data strongly support monomeric structure 2 in both media. Me-Sn-Me angles of hexacoordinated dimethyltin(IV) compounds have been related to the "bite" angle of the chelating ligand and steric interactions in the coordination sphere of tin.^{16,17} These parameters for 2 would differ significantly from those of the eight-membered chelate ring in the alternative structures 3 and

⁽¹³⁾ Lockhart, T. P.; Manders, W. F. Inorg. Chem. 1986, 25, 892. (14) Lockhart, T. P.; Manders, W. F.; Schlenper, E. O. J. Am. Chem. Soc.

^{1985, 107, 7451.} (15) Lockhart, T. P.; Manders, W. F. J. Am. Chem. Soc. 1985, 107, 5863. Lockhart, T. P.; Manders, W. F. J. Organomet. Chem. 1985, 297, 143.

²⁰ 180 40 200 0 -20 PPM

⁽¹⁶⁾ Kepert, D. L. J. Organomet. Chem. 1976, 107, 49. Kepert. D. L. Prog. Inorg. Chem. 1977, 23, 1.
(17) Bancroft, G. M.; Sham, T. K.; Tse, J. S. Can. J. Chem. 1979, 57, 2222

4 and would have given rise to a large difference in the solid-state and solution $|^{1}J|$ values. The Me-Sn-Me angle and structural features estimated for Me₂Sn(OAc)₂ resemble those reported in X-ray studies of dimethyltin bis(O-ethylxanthate)¹⁸ and several dimethyltin bis(dithiocarbamate)s^{14,19} (these all have chelating CS₂ ligands and Me-Sn-Me angles between 130° and 143°). Owing to its extreme hydrolytic sensitivity, we have been unable to successfully mount crystals of Me₂Sn(OAc)₂ for X-ray diffraction.

The solid-state ¹³C NMR data (Table I) of microcrystalline Me₂Sn(laurate)₂ (estimated Me-Sn-Me angle 140°) strongly suggest a structure similar to that of Me₂Sn(OAc)₂; solution data⁵ indicate similar bonding for $Me_2Sn(benzoate)_2(|^{1}J| = 664 Hz)$. The structure of n-Bu₂Sn(OAc)₂ probably also resembles 2 rather than 4.4 The slightly smaller $|^{1}J|$ value of the dibutyltin compound is typical of the difference commonly observed²⁰ between methyltin(IV) and *n*-butyltin(IV) compounds.

An interesting detail in the solid-state ¹³C NMR spectrum of $Me_2Sn(OAc)_2$ (Figure 1) is the presence of small resonances beside those of the tin-methyl and carboxylate carbons. The chemical shifts are inconsistent with the presence of the hydrolysis product or other likely impurities, and the solution ¹³C NMR of the sample showed only the three-line spectrum expected for $Me_2Sn(OAc)_2$. The ratio of the heights of each of the minor resonances to the nearest Me₂Sn(OAc)₂ resonance is the same for both $(3.5 \pm 0.1:1)$, suggesting that they arise from a second crystalline form of $Me_2Sn(OAc)_2$ present in the recrystallized product. Such polymorphism is not uncommon²¹ in organotin chemistry, and we have shown^{19c} elsewhere that resonances of different crystalline modifications of a methyltin(IV) compound can be resolved by solid-state ¹³C NMR.

Solid-State and Solution Structures of [Me₂Sn(OAc)]₂O. Cryoscopic molecular weight measurements^{3b} on [Me₂Sn- $(OAc)]_2O$ indicated that it exists predominantly as a dimer in benzene solution at concentrations above 0.03 M. The IR spectrum of ([Me₂Sn(OAc)]₂O)₂ in CHCl₃ solution showed three CO₂ antisymmetric stretching bands (1630, 1605, and 1562 cm⁻¹), one of which was attributed^{3b} to the monomer; the solid shows a single band at 1560 cm⁻¹. Our solid-state and solution (0.3 M) ¹³C NMR data for ([Me₂Sn(OAc)]₂O)₂ confirm that different structures are present in these media (Table I).

X-ray studies of several dicarboxylato tetraorganodistannoxanes⁷⁻¹⁰ have indicated that they adopt structure 5. As a consequence of the C_2 symmetry axis of 5, a relatively simple solid-state ¹³C NMR spectrum was expected for ([Me₂Sn- $(OAc)]_2O_2$ (there can be a maximum of only four unique pairs of methyls). Instead, six distinct tin-methyl¹³C resonances are

resolved for polycrystalline ($[Me_2Sn(OAc)]_2O_2$ (Figure 1). Similarly, in place of the two carboxylate carbon resonances

Table II. Positional Parameters for ([Me₂Sn(OAc)]₂O)₂

atom	xª	y ^a	z ^a
Snl	0.3677	0.3112 (2)	0.4655
Sn2	0.5610(1)	0.1971 (2)	0.4704 (1)
Sn3	0.4220(1)	0.2277 (2)	0.1638 (2)
Sn4	0.5146 (1)	0.2473 (2)	0.7750 (2)
O 1	0.4843 (11)	0.2418 (17)	0.5901 (16)
O2	0.4427 (9)	0.2428 (18)	0.3475 (14)
O 11	0.2597 (13)	0.3689 (32)	0.2924 (20)
O12	0.2835 (12)	0.2056 (35)	0.1448 (22)
C11	0.2354 (16)	0.2862 (32)	0.2034 (24)
C12	0.1453 (13)	0.2854 (38)	0.1346 (27)
O21	0.6674 (11)	0.1316 (25)	0.6361 (18)
O22	0.6518 (11)	0.2985 (26)	0.7905 (19)
C21	0.6966 (15)	0.2172 (35)	0.7376 (27)
C22	0.7996 (21)	0.2262 (41)	0.7819 (32)
O31	0.5436 (9)	0.2437 (19)	0.0104 (12)
O32	0.5637 (8)	0.2213 (20)	0.2132 (12)
C31	0.5896 (12)	0.2315 (22)	0.1128 (18)
C32	0.6856 (12)	0.2215 (33)	0.1412 (28)
O41	0.3834 (8)	0.2036 (19)	0.7954 (13)
O42	0.3163 (9)	0.3708 (19)	0.6437 (12)
C41	0.3166 (12)	0.2865 (23)	0.7361 (18)
C42	0.2323 (22)	0.2634 (33)	0.7909 (27)
C1A	0.3099 (19)	0.0682 (35)	0.4720 (31)
C1 B	0.3799 (19)	0.5840 (29)	0.4667 (28)
C2A	0.6257 (23)	0.4333 (44)	0.4550 (34)
C2B	0.5628 (18)	-0.0713 (26)	0.4372 (28)
C3A	0.4122 (20)	-0.0332 (35)	0.0965 (29)
C3B	0.4036 (19)	0.4883 (35)	0.0925 (27)
C4A	0.5100 (15)	0.5156 (28)	0.8138 (23)
C4B	0.5367 (17)	-0.0151 (29)	0.8117 (21)

^aEstimated standard deviations are in parentheses.

Figure 2. ORTEP drawing of $([Me_2Sn(OAc)]_2O)_2$ showing the atom numbering scheme. The dashed line indicates bonds to the adjacent dimer. (The drawing is a projection down the b axis with the origin in the lower left corner, a horizontal, and c vertical.)

expected, three are found. The complexity of the spectrum and the loss of J coupling information owing to overlap of the satellite resonances ruled out the possibility of making a satisfactory structural assignment from the NMR data alone. Because of the apparent uniqueness of ([Me₂Sn(OAc)]₂O)₂ relative to other structurally characterized dicarboxylato tetraorganodistannoxanes, an X-ray diffraction study was undertaken.²

⁽¹⁸⁾ Dakternieks, D.; Hoskins, B. F.; Tiekink, E. R. T.; Winter, G. Inorg.

⁽¹⁸⁾ Dakternicks, D.; Hoskins, B. F.; Hekink, E. R. I.; Winter, G. Inorg. Chim. Acta 1984, 85, 215.
(19) (a) Kimura, T.; Yasuoka, N.; Kasai, N.; Kakudo, M. Bull. Chem. Soc. Jpn. 1972, 45, 1649. (b) Morris, J. S.; Schlemper, E. O. J. Cryst. Mol. Struct. 1979, 9, 13. (c) Lockhart, T. P.; Manders, W. F.; Schlemper, E. O.; Zuckerman, J. J. J. Am. Chem. Soc. 1986, 108, 4074.
(20) Mitchell, T. N.; Walter, G. J. Organomet. Chem. 1976, 121, 177.

Petrosyan, V. S. Prog. NMR Spectrosc. 1977, 11, 115.

⁽²¹⁾ For a bibliography of organotin X-ray structures, see: Smith, P. J. J. Organomet. Chem. Libr. 1981, 12, 97.

⁽²²⁾ An earlier, incomplete X-ray study of ([Me₂Sn(OAc)]₂O)₂ giving cell constants has appeared: Zvonkova, Z. V.; Povet'eva, Z. P.; Vozzennikov, V. M.; Gluskova, V. P.; Jakovenco, V. I.; Khvatkina, A. N. Acta Crystallogr., A 1966, 21, A155 (9.71).

Table III. Bond Angles (deg) and Distances (Å) for $([Me_2Sn(OAc)_2O)_2^a)$

2 15 (2)	Sn3-012	2 24 (2)
2.15(2)		2.2+(2)
2.07 (2)	Sn4-C4a	2.14 (2)
2.01 (2)	Sn4–C4b	2.10 (2)
2.07 (2)	Sn4-022	2.25 (2)
2.07(2)	S=4-041	2.22(1)
2.12(1)	514-041	2.24(1)
2.00 (2)	Sn4-031	2.56 (1)
2.12(3)	011-C11	1.17 (3)
2 1 2 (2)	012-011	1 30 (4)
2.13(2)	012-011	1.50 (4)
2.38 (2)	C11-C12	1.50 (3)
2.34 (2)	O21-C21	1.30 (3)
2 15 (4)	022 - 021	1 22 (4)
2.13(4)	022 021	1.22(+)
2.12 (2)	C21-C22	1.64 (4)
2.89(1)	O31-C31	1.22 (2)
2 28 (2)	032 - C31	1 29 (2)
2.20(2)		1.52(2)
2.10 (5)	C31-C32	1.55 (5)
2.17 (3)	O41-C41	1.31 (2)
2.92(2)	O42-C41	1.22(2)
2 26 (1)	C41-C42	1.65 (4)
2.20 (1)	C41-C42	1.05 (+)
101 9 (7)	012 5-2 021	120 0 (7)
101.8 (7)	012-3115-031	137.7(7)
128.9 (9)	O12–Sn3–C3a	84.5 (11)
128.9 (8)	O12-Sn3-C3b	89.2 (11)
1026(6)	032-5=3-031	487(4)
102.0(0)		+0.7(+)
133.2 (7)	032-Sn3-C3a	93.0 (9)
124.1 (8)	O32–Sn3–C3b	99.0 (9)
158 1 (12)	O31-Sn3-C3a	80.8 (10)
142 2 (14)	021_S=2_C2b	78 4 (0)
145.2 (14)	031-3113-030	70.4 (3)
139.2 (11)	O1-Sn4-O41	95.2 (6)
157.5 (9)	O1-Sn4-O22	94.8 (7)
95 1 (8)	01-Sn4-031'	1760 (5)
95 .1 (8)	01-3114-031	1/0.0 (3)
100.3 (8)	01-Sn4-C4a	102.6 (8)
86.6 (6)	O1-Sn4-C4b	99.8 (7)
165.5 (8)	O41-Sn4-O22	170.0 (6)
77 2 (4)	041 5=4 021/	910(5)
77.5 (0)	041-314-031	81.0 (3)
97.4 (10)	O41–Sn4–C4a	92.7 (8)
101.0 (10)	O41-Sn4-C4b	87.6 (9)
163 9 (4)	022 - 8n4 - 031'	89 n (á)
103.9(7)	022 514 051	07.0 (0)
88.2 (7)	022-Sn4-C4a	83.9 (8)
84.0 (10)	O22–Sn4–C4b	91.9 (9)
81.5 (10)	O31'-Sn4-C4a	84.3 (7)
107.0 (7)	021/ Sn4_C4b	743 (7)
107.9 (7)	031-3114-040	19.3(1)
86.7 (10)	Sn1-042-C41	132(1)
82.3 (9)	Sn4-O41-C41	126 (1)
107 1 (11)	Sn1-011-C11	130(2)
109.2 (10)	S=2 012 C11	120 (2)
108.5 (10)	313-012-011	130 (2)
88.6 (7)	Sn4-022-C21	124 (2)
141.8 (5)	Sn2-O21-C21	130 (2)
77 9 (6)	Sn2-032-031	162 (1)
		102 (1)
101.4(4)	Sn3-032-031	108 (1)
95.7 (8)	Sn3-O31-C31	78 (1)
165.5 (7)	Sn4'-O31-C31	153 (1)
10010 (1)		125 (2)
616 (5)	$(1) = (1) = (1)^2$	
64.6 (5)	011-C11-012	123(2)
64.6 (5) 87.7 (10)	011-C11-012 011-C11-C12	112 (2)
64.6 (5) 87.7 (10) 83.3 (9)	O11-C11-O12 O11-C11-C12 O12-C11-C12	123 (2) 112 (2) 122 (3)
64.6 (5) 87.7 (10) 83.3 (9) 129 4 (6)	011-C11-O12 011-C11-C12 012-C11-C12 021-C21-022	123 (2) 112 (2) 122 (3) 123 (2)
64.6 (5) 87.7 (10) 83.3 (9) 129.4 (6) 75.0 (10)	011-C11-O12 011-C11-C12 012-C11-C12 021-C21-O22	$\begin{array}{c} 123 (2) \\ 112 (2) \\ 122 (3) \\ 123 (2) \\ 115 (2) \end{array}$
64.6 (5) 87.7 (10) 83.3 (9) 129.4 (6) 75.0 (10)	011-C11-O12 011-C11-C12 012-C11-C12 021-C21-O22 021-C21-C22	123 (2) 112 (2) 122 (3) 123 (2) 115 (2)
64.6 (5) 87.7 (10) 83.3 (9) 129.4 (6) 75.0 (10) 83.5 (9)	011-C11-012 011-C11-C12 012-C11-C12 021-C21-022 021-C21-C22 022-C21-C22	123 (2) 112 (2) 122 (3) 123 (2) 115 (2) 121 (2)
64.6 (5) 87.7 (10) 83.3 (9) 129.4 (6) 75.0 (10) 83.5 (9) 91.4 (8)	011-C11-012 011-C11-C12 012-C11-C12 021-C21-022 021-C21-C22 022-C21-C22 031-C31-032	123 (2) 112 (2) 122 (3) 123 (2) 115 (2) 121 (2) 124 (2)
64.6 (5) 87.7 (10) 83.3 (9) 129.4 (6) 75.0 (10) 83.5 (9) 91.4 (8) 80.5 (6)	011-C11-012 011-C11-C12 012-C11-C12 021-C21-022 021-C21-C22 022-C21-C22 031-C31-032 031-C31-C22	123 (2) 112 (2) 122 (3) 123 (2) 115 (2) 121 (2) 124 (2) 125 (2)
64.6 (5) 87.7 (10) 83.3 (9) 129.4 (6) 75.0 (10) 83.5 (9) 91.4 (8) 80.5 (6)	011-C11-O12 011-C11-C12 012-C11-C12 021-C21-O22 021-C21-C22 022-C21-C22 031-C31-O32 031-C31-C32	125 (2) 112 (2) 122 (3) 123 (2) 115 (2) 121 (2) 124 (2) 125 (2)
64.6 (5) 87.7 (10) 83.3 (9) 129.4 (6) 75.0 (10) 83.5 (9) 91.4 (8) 80.5 (6) 128.7 (5)	011-C11-O12 011-C11-C12 012-C11-C12 021-C21-O22 021-C21-C22 022-C21-C22 031-C31-O32 031-C31-C32 032-C31-C32	123 (2) 112 (2) 122 (3) 123 (2) 115 (2) 121 (2) 124 (2) 125 (2) 110 (2)
64.6 (5) 87.7 (10) 83.3 (9) 129.4 (6) 75.0 (10) 83.5 (9) 91.4 (8) 80.5 (6) 128.7 (5) 113.1 (9)	011-C11-O12 011-C11-C12 012-C11-C12 021-C21-O22 021-C21-C22 022-C21-C22 031-C31-C32 032-C31-C32 041-C41-O42	123 (2) 112 (2) 122 (3) 123 (2) 115 (2) 121 (2) 124 (2) 125 (2) 110 (2) 122 (2)
64.6 (5) 87.7 (10) 83.3 (9) 129.4 (6) 75.0 (10) 83.5 (9) 91.4 (8) 80.5 (6) 128.7 (5) 113.1 (9) 107.3 (9)	O11-C11-O12 O11-C11-C12 O12-C11-C12 O21-C21-O22 O21-C21-C22 O22-C21-C22 O31-C31-O32 O31-C31-C32 O31-C31-C32 O41-C41-O42 O41-C41-C42	122 (2) 122 (3) 123 (2) 115 (2) 121 (2) 124 (2) 125 (2) 110 (2) 122 (2) 116 (2)
	2.15 (2) 2.07 (2) 2.07 (2) 2.07 (2) 2.12 (1) 2.00 (2) 2.12 (3) 2.13 (2) 2.38 (2) 2.38 (2) 2.38 (2) 2.38 (2) 2.39 (1) 2.28 (2) 2.15 (4) 2.12 (2) 2.89 (1) 2.28 (2) 2.16 (3) 2.17 (3) 2.92 (2) 2.26 (1) 101.8 (7) 128.9 (9) 128.9 (8) 102.6 (6) 133.2 (7) 124.1 (8) 158.1 (12) 143.2 (14) 139.2 (11) 157.5 (9) 95.1 (8) 100.3 (8) 86.6 (6) 165.5 (8) 77.3 (6) 97.4 (10) 101.0 (10) 163.9 (4) 88.2 (7) 84.0 (10) 81.5 (10) 107.9 (7) 86.7 (10) 82.3 (9) 107.1 (11) 108.3 (10) 88.6 (7) 141.8 (5) 77.9 (6) 101.4 (4) 95.7 (8) 165.5 (7)	2.15 (2) Sn3-O12 2.07 (2) Sn4-C4a 2.01 (2) Sn4-C4b 2.07 (2) Sn4-C4b 2.07 (2) Sn4-O22 2.12 (1) Sn4-O41 2.00 (2) Sn4-O31 2.12 (3) O11-C11 2.13 (2) O12-C11 2.13 (2) O12-C11 2.38 (2) C11-C12 2.34 (2) O21-C21 2.15 (4) O22-C21 2.15 (4) O22-C21 2.15 (4) O22-C21 2.16 (3) C31-C31 2.88 (2) O32-C31 2.16 (3) C31-C32 2.17 (3) O41-C41 2.92 (2) O42-C41 2.26 (1) C41-C42 101.8 (7) O12-Sn3-C3a 128.9 (8) O12-Sn3-C3a 128.9 (1) O31-Sn3-C3a 143.2 (14) O31-Sn4-C41 157.5 (9) O1-Sn4-O21 95.1 (8) O1-Sn4-C42 86.6 (6) O1-Sn4-C4a 86.6 (6) O1-Sn4-C4a 86.6 (6) O1-Sn4-C4a 100.0 (10) O41-Sn4-C4a 101.0 (10) O41-Sn4-C4a 101.0 (10) O41-Sn4-C4a 101.0 (10) O41-Sn4-C4a 101.0 (10) O41-Sn4-C4a 101.0 (10) O41-Sn4-C4a 86.7 (10) Sn1-O42-C41 82.3 (9) Sn4-O41-C41 107.1 (11) Sn1-O11-C11 108.3 (10) Sn3-O12-C11 88.6 (7) Sn4-O22-C21 141.8 (5) Sn2-O21-C21 177.9 (6) Sn2-O32-C31 101.4 (4) Sn3-O32-C31 101.4 (4) Sn3-O32-C31 101.4 (4) Sn3-O32-C31 101.4 (4) Sn3-O32-C31 101.4 (4) Sn3-O32-C31 101.4 (4) Sn3-O32-C31

^a Primes (') indicate interaction between adjacent dimers.

Positional parameters of $([Me_2Sn(OAc)]_2O)_2$ are given in Table II, bond angles and distances in Table III, and an ORTEP²³ view in Figure 2. For comparison, relevant structural parameters of all structurally characterized (dicarboxylato)tetraorgano-distannoxanes are collected in Table IV. The X-ray analysis confirms the low symmetry of $([Me_2Sn(OAc)]_2O)_2$ indicated by the solid-state NMR data. In the solid state $[Me_2Sn(OAc)]_2O$ exists as a dimer made up of planar Sn_2O_2 rings [standard de-

viation = 0.05 Å from plane; Sn-O av = 2.10 Å, O-Sn-O = 77.6(6)°, Sn–O–Sn = 102.2 (7)°] which are edge-bridged by acetate ligands. There are two distinct types of acetate groups in the molecule; three are bidentate, bridging two tin atoms and lying on planes which form angles 33.79° (av) with the Sn₂O₂ plane, and one acetate is bidentate to a single tin atom but has interactions with two additional tin atoms (the plane of this acetate forms an angle of 14.85° with the Sn_2O_2 plane). Unlike ([Me₂Sn(OAc)]₂O)₂, other characterized dicarboxylato tetraorganodistannoxanes have centrosymmetric arrangements of acetates about the Sn₂O₂ ring; in these molecules one pair of acetates are each bidentate, bridging pairs of tin atoms, and the other two acetate groups are each bidentate to a single tin atom but have additional close distances either to one other tin atom (as in 5)^{9,10} or to two tin atoms (one interdimer Sn–O interaction).7,8

In the $([Me_2Sn(OAc)]_2O)_2$ crystal there is an additional short bonding interaction [2.56 (1) Å] between exocyclic Sn4 and carboxylate oxygen O31' of the adjacent dimer, giving rise to a polymer structure (no other interatomic distances <3.54 Å were found). The geometry at Sn4 supports the bonding nature of the Sn4-O31' interaction: Sn4 has a distorted octahedral (rather than trigonal-bipyramidal) configuration, with a Me-Sn-Me angle of 157.5 (9)° and an approximately square planar geometry of the four bound oxygens. Substantially longer interdimer Sn-O' distances were found (Table IV) for each of the exocyclic tin atoms in $([Me_2Sn(O_2CCF_3)]_2O)_2$,⁸ 3.0 Å, and $([Me_2Sn(O_2CCH_2Cl)]_2O)_2$,⁷ 3.2 Å; a CN of 7 was assigned to the exocyclic tin atoms of the latter distannoxane. The three remaining Sn atoms in the $([Me_2Sn(OAc)]_2O)_2$ dimer also have CN = 6 and adopt rather common²¹ distorted octahedral configurations. As expected from discussions¹⁶ of the relationship of the Me-Sn-Me angle to bonding in the SnX₄ square plane in hexacoordinated diorganotin(IV) compounds, the largest angles are associated with the tin centers (Sn1, Sn4) having the least distorted SnO₄ square plane and shortest Sn-O contacts (compare particularly Sn1 to Sn2, Sn4 to Sn3).

The solution ¹³C and ¹H NMR data (Table I) for $(Me_2Sn-(OAc)]_2O)_2$ are more amenable to analysis than the solid-state NMR data. Under the conditions of the measurement (0.3 M), $[Me_2Sn(OAc)]_2O$ was present in solution as the dimer^{3b} and the two equal-sized Me₂Sn resonances may be assigned to the endo and exocyclic tin atoms. Me–Sn–Me angles, estimated from the J coupling data by using eq 1 and 2, are 141° for the upfield and 145° for the downfield methyl resonances (averages from the |¹J| and |²J| values). Three reasonable dimer structures can be enumerated: **6**, in which the acetates are bidentate and symmetrically bridge two tin atoms, resulting in CNs of 5 for the endo- and exocyclic tin atoms have CN = 5; **5**, in which both the endo- and exocyclic tin atoms have CN = 6.

Although the presence of oxygen in the trigonal plane of the pentacoordinated, exocyclic tin atoms in 6 and 7 might produce an increase in the Me–Sn–Me angle owing to orbital rehybridization,²⁴ the large Me–Sn–Me angles indicated by NMR favor hexacoordinated endo- and exocyclic tins as in 5. The crystal

⁽²³⁾ Johnson, C. K. ORTEP, Report ORNL-3794, 1965, Oak Ridge National Laboratory, Oak Ridge, TN.

⁽²⁴⁾ Bent, H. A. Chem. Rev. 1961, 61, 275.

		D(Sn-O)	, A			
	Sn-O (oxide)		Sn-O (carboxylate)		∠Me-Sn-Me.	
compound	endocyclic	exocyclic	intermolecular	D(Sn-C), Å	deg	ref
$([Me_2Sn(OAc)]_2O)_2$	$\begin{array}{c} 2.07 (2) \times 2 \\ 2.15 (2) \\ 2.12 (1) \end{array}$	2.01 (2) 2.00 (2)	2.56 (1)	2.12 (3), 2.13 (2) 2.15 (4), 2.12 (2) 2.16 (3), 2.17 (3) 2.14 (2), 2.10 (2)	158.1 (12) 143.2 (14) 139.2 (11) 157.5 (9)	this work
$([Me_2Sn(O_2CCH_2Cl)]_2O)_2$	2.07 (1) 2.10 (1)	2.03 (1)	3.18 (2)	2.11 (3), 2.09 (3) 2.21 (3), 2.09 (3)	145.6 (8) 158. 5 (9)	7
$([Me_2Sn(O_2CCF_3)]_2O)_2$ $([(CH_2=CH)_2Sn(O_2CCF_3)]_2O)_2^a$	2.039 (5) 2.137 (4) 2.08 2.11	2.040 (4) 2.06	2.996 (6)	2.104 (10) × 2 2.107 (9) × 2	147.5 (3) 148.9 (2)	8 9
$([n-Bu_2Sn(O_2CCCl_3)]_2O)_2$	2.03 (2) 2.12 (2)	2.05 (2)	b	2.08 (5), 2.13 (3) 2.11 (3), 2.07 (5)	143 (2) 137 (2)	10

Table IV. Comparison of Selected Bond Distances and Angles in Dicarboxylato Tetraorganodistannoxanes

^a Partial structure determination; R = 0.20. ^b There are no Sn···O intermolecular distances <4.00 Å.

structure of ($[Me_2Sn(OAc)]_2O_2$ (Figure 2) provides an idea of the Me–Sn–Me angles that are likely for a structure of this type. The endocyclic tins in 5 should resemble Sn2 closely and the exocyclic tins Sn3. The similarity of the estimated Me–Sn–Me angles in solution (145 and 141°) to the angles observed in the solid state for Sn2 and Sn3 [143.2 (14) and 139.2 (11)°, respectively] supports 5 as the solution structure of ($[Me_2Sn-(OAc)]_2O_2$. The upfield ¹H and ¹³C resonances, which have the smaller J couplings, are further identified with the exocyclic Me₂Sn and the downfield resonance with the endocyclic Me₂Sn moiety on the basis of recent studies²⁵ of $[Me_2SnC1]_2O$ and a variety of disubstituted tetraorganodistannoxanes, *n*-Br₂(X)SnOSn(Y)-*n*-Bu₂ (X, Y = combinations of Cl, Br, OH, OPh) by solution ¹H and ¹¹⁹Sn NMR.

Conclusions

An empirical relationship of $|{}^{1}J|$ with the Me-Sn-Me bond angle, developed in solid-state ${}^{13}C$ NMR studies, and another relating $|{}^{2}J|$ and the Me-Sn-Me angle $|{}^{2}J|$ /angle relationship have been used to investigate the solution and solid-state structures of [Me₂Sn(OAc)]₂O and its hydrolysis product, ([Me₂Sn(OAc)]₂O)₂. The similarity of the structural data for Me₂Sn(OAc)₂ in the solid state and in solution, along with comparison to appropriate model compounds, strongly indicates Me₂Sn(OAc)₂ to be monomeric, have a CN of 6, and adopt a distorted octahedral configuration in the solid state as well as in solution. Analysis of solution NMR data for Me₂Sn(benzoate)₂ and *n*-Bu₂Sn(OAc)₂ and solid-state NMR data for Me₂Sn(laurate)₂ indicates that these dimethyltin dicarboxylates are similar in configuration to Me₂Sn(OAc)₂.

The ability of solid-state NMR to reveal structurally interesting features of complex molecules has been demonstrated for $([Me_2Sn(OAc)]_2O)_2$, whose complex solid-state ¹³C NMR spectrum is inconsistent with the symmetry of related, structurally characterized distannoxanes. An X-ray diffraction study confirmed the low symmetry and unusual structure of this dicarboxylato tetraorganodistannoxane. The solution structure of $([Me_2Sn(OAc)]_2O)_2$ has been assigned by analysis of the J coupling data in the solution ¹H and ¹³C NMR spectra.

Experimental Section

Materials. The solid-state ¹³C NMR spectrum of $Me_2Sn(laurate)_2$ indicated it was of high purity as obtained from a commercial source. $Me_2Sn(OAc)_2$ was prepared as described in the literature.^{3b} Recrystallization from warm *n*-heptane gave clear colorless needles. All manipulations of $Me_2Sn(OAc)_2$ were carried out under a dry, inert atmosphere (N₂) to prevent hydrolysis, which otherwise occurred in a few seconds on exposure to ambient air. The solid-state NMR sample was loaded into a sample rotor within an inert atmosphere drybox; no hydrolysis of solution or solid-state NMR samples handled in this way was

)] ₂ O) ₂	$_2$ Sn(OAc)	for $([Me_2S]$	Data i	Crystal	Table V.
--	---------------------------------	--------------	----------------	--------	---------	----------

formula	Sn ₄ O ₁₀ C ₁₆ H ₃₆
mol wt	863.2
a, Å	16.386 (5)
b, Å	7.780 (2)
c, Å	11.183 (5)
α , deg	90.0
β , deg	103.61 (3)
γ , deg	90.0
V, Å ³	1385.5 (8)
F(000)	824.0
μ (Mo K α), cm ³	-1 36.19
λ (Mo K α), Å	0.71069
D_{calcd} , g cm ⁻³	2.069
Z	2
obsd reflns	3113
R/R _w /GOF	4.7%/5.4%/3.1
space group	Pa
absences obsd	h0l, h = 2n + 1
resid. dens, e Å	-3 0.46
crystal dimens,	mm $0.2 \times 0.2 \times 0.3$

observed. $([Me_2Sn(OAc)]_2O)_2$ was prepared in a slight variation of the literature procedure:^{3b} H₂O (0.2 mL) was added to a solution of Me₂Sn(OAc)₂ (ca. 0.4 g) in 15 mL of MeOH. The mixture was heated to 50 °C to give a homogeneous solution; slow cooling yielded small colorless crystals in ca. 75% yield [mp 240 °C dec (lit.^{3b} mp 236 °C)]. NMR Spectroscopy. Solid-state ¹³C NMR spectra were obtained on

NMR Spectroscopy. Solid-state ¹³C NMR spectra were obtained on samples of ca. 0.4 g at 15.08 MHz by using a homebuilt instrument with a probe temperature of 304 K. The high-resolution spectra were acquired with 60-MHz high-power proton decoupling, spin-locking cross-polarization with the ¹H and ¹³C fields matched at 57 kHz for 2 ms and magic angle spinning at 2300 Hz. Dwell times of 50 μ s and repetition rates of 6 s were used. ¹³C chemical shifts are relative to internal secondary standard Delrin (89.1 ± 0.3 ppm). Because of the similar gyromagnetic ratios of the spin-¹/₂ isotopes ¹¹⁷Sn and ¹¹⁹Sn (1:1.046) and their similar natural abundances (7.6 and 8.6%, respectively), the magnitude of ¹J-(¹¹⁹Sn,¹³C) for Me₂Sn(OAc)₂ was calculated by multiplying the separation of the fused ¹¹⁷Sn and ¹¹⁹Sn satellites by 1.023.

Solution ¹³C NMR spectra were recorded on a Bruker WM-400 spectrometer (100.6 MHz for ¹³C). Solutions were ca. 10% by weight dimethyltin(IV); dry benzene- d_6 was employed as solvent for Me₂Sn-(OAc)₂. ¹J(¹¹⁹Sn,¹³C) values are reproducible to ±3 Hz.

Crystal Structure Determination and Refinement. A crystal of $([Me_2Sn(OAc)]_2O)_2$ was sealed in a capillary and mounted on a Syntex P3 automated diffractometer. Unit cell dimensions (Table V) were determined by least-squares refinement of the best angular positions for 15 independent reflections $(2\theta > 15^{\circ})$ during normal alignment procedures using molybdenum radiation ($\lambda = 0.71069$). Data (3928 reflections) were collected at room temperature (27 °C) with use of a variable scan rate, a θ -2 θ scan mode, and a scan width of 1.2 below K α_1 and 1.2 above K α_2 to a maximum 2 θ value of 116°. Backgrounds were measured at each side of the scan for a combined time equal to the total scan time. The intensities of three standard reflections were remeasured after every 97 reflections, and as the intensities of these reflections showed less than 6% variation, corrections for decomposition were deemed unnecessary. Data were corrected for Lorentz, polarization, and background effects.

⁽²⁵⁾ Fujiwara, H.; Sakai, F.; Sasaki, Y. J. Chem. Soc., Perkin Trans. 2 1983, 11. Otera, J.; Yano, T.; Nakashima, K.; Okawara, R. Chem. Lett. 1984, 2109.

After removal of redundant and space group forbidden data, 3113 reflections were considered observed $[I > 3.0\sigma(I)]$. The structure was solved for heavy-atom positions with MULTAN80.²⁶ Initial refinement of heavy-atom positions was completed in centric space group P2/a. While locations for the oxo atoms, one acetate, and the methyl carbon atoms attached to tin were readily apparent from a difference Fourier synthesis and these positions were stable to refinement, the positioning of the remaining acetate group was not possible. Positions located failed to refine or refined to chemically unreasonable positions. When atomic coordinates were refined in the acentric cell Pa the positions of two acetate groups, unrelated by a center of symmetry, were clearly apparent. Thus refinement was completed in the acentric cell. However, the coordinates of the majority of the atoms of the asymmetric unit remain related by the removed center of symmetry, and thus problems of correlation of parameters complicate refinement. This difficulty appears in the temperature parameters for methyl groups of acetate ions and in bond distances involving these atoms. The positioning of tin and oxygen atoms appears well established. Successive least squares/difference Fourier cycles allowed location of the remainder of the non-hydrogen atoms. Refinement of scale factor, positional, and anisotropic thermal parame-

(26) Main, P.; Fiske, S. J.; Hull, S. E.; Lessinger, L.; Germain, G.; De-Clerq, J. P.; Woolfson, M. M., University of York, England, 1980.

ters for all non-hydrogen atoms was carried out to convergence. The use of the acentric space group, Pa, was justified by the noncentric relationship of carboxylates O31, O32, C31, C32 and O41, O42, C41, C42 (Table II) although the rest of the molecule is nearly centrosymmetric. Hydrogen positions were not apparent from a difference Fourier synthesis calculated after final anisotropic refinement of all non-hydrogen parameters. The final cycle of refinement [function minimized $\sum (|F_0| - |F_c|)^2$] led to a final agreement factor, R = 4.7%, $R = (\sum ||F_o| - |F_c||) / \sum |F_o| 100$. Anomalous dispersion corrections were made for Sn. Scattering factors were taken from Cromer and Mann.²⁷ Unit weights were used until the final cycles of refinement when a weight = $1/\sigma F$ was applied; $R_w = 5.4$. Tables of anisotropic thermal parameters, F_{o} , and F_{c} and calculated equations of planes are available as supplementary material.

Registry No. Me₂Sn(OAc)₂, 13293-57-7; Me₂Sn(laurate)₂, 5926-79-4; [Me₂Sn(OAc)]₂O, 2179-99-9.

Supplementary Material Available: Tables of anisotropic thermal parameters and calculated equations of planes (3 pages); tables of F_{o} and F_{c} (23 pages). Ordering information is given on any current masthead page.

(27) Cromer, D. T.; Mann, I. B. Acta Crystallogr. 1968, A24, 321.

Metal-Stabilized Rare Tautomers of Nucleobases. 1. Iminooxo Form of Cytosine: Formation through Metal Migration and Estimation of the Geometry of the Free Tautomer

Bernhard Lippert, *1a Helmut Schöllhorn, 1b and Ulf Thewalt1b

Contribution from the Institut für Anorganische und Analytische Chemie, Universität Freiburg, 7800 Freiburg, FRG, and the Sektion für Röntgen- und Elektronenbeugung, Universität Ulm, 7900 Ulm, FRG. Received February 18, 1986

Abstract: A way is presented according to which the geometry of rare nucleobase tautomers is estimated by (i) preparing metal complexes of the rare tautomers, (ii) determining the crystal structure of the metal complex as accurately as possible, and (iii) "subtracting" the effect of the metal on the ligand geometry. The preparation, crystal structures, and spectroscopic (¹H NMR, Raman) properties of two modifications of a complex of Pt^{IV} with the model nucleobase 1-methylcytosine (1-MeC), trans, trans, trans- $[Pt(NH_3)_2(OH)_2(C_5H_7N_3O)_2](NO_3)_2 \cdot 2H_2O$, is reported. In the two compounds, neutral 1-MeC ligands are coordinated to Pt through the deprotonated exocyclic N4' positions with N3 protonated. Thus the 1-MeC ligands are in the rare iminoxo tautomer form of cytosine. **5a** crystallizes in the triclinic space group $P\overline{1}$ with a = 5.819 (2) Å, b = 7.178 (2) Å, c = 13.626 (7) Å, $\alpha = 90.72$ (4)°, $\beta = 105.82$ (3)°, $\gamma = 94.02$ (8)°, V = 545.9 Å³, and Z = 1. **5b** crystallizes in the monoclinic space group $P\overline{2}_1/c$ with a = 8.892 (1) Å, b = 11.496 (1) Å, c = 11.010 (1) Å, $\beta = 100.05$ (2)°, V = 1108.2 Å³, and Z = 2. The structures were refined to R = 0.020, $R_w(F) = 0.020$ in **5a** and R = 0.040, $R_w(F) = 0.045$ in **5b** on the basis of 1911 (5a) and 2525 (5b) independent reflections. The geometries of the 1-MeC ligands in 5a and 5b differ from that of the normal, uncomplexed 1-MeC tautomer with significant differences in C4-N4' and N1-C2 bond lengths (shorter in 5), in N3-C4 and C2-N3 bond lengths (longer in 5), as well as in ring angles at positions 2, 3, and 4. The effect of Pt^{IV} on the geometry of the cytosine ring is suggested to be minimal and essentially restricted to the exocyclic imino group by slightly lengthening the C4-N4' bond. Formation of 5 occurs in three distinct steps, all of which have been detected in solution, and the respective species have been isolated: (i) Pt coordination via N3, (ii) chelate formation through N3 and N4' with elimination of H_2O from the complex, and (iii) addition of H_2O to the complex with reformation of Pt-OH and opening of the Pt-N3 bond. The acidity of the rare 1-MeC tautomer in its Pt^{1V} complexed form (deprotonation at N3) has been determined as ca. 5.8 (pK_{a1}) and 8.2 (pK_{a2}) .

The rare tautomers of the naturally occurring nucleobases have been the subject of numerous studies, both with respect to their possible biological role in base-mispairing and mutagenesis,² and their physical properties such as relative energy, geometry, acidity, etc.³ Apart from detection problems of rare tautomers present in proportions lower than 10^{-4} , a major difficulty with quantumChart I TT TIT

mechanical calculations on relative energies of tautomers represents the geometry approximation used for the respective tautomer.4

 ⁽a) Universität Freiburg. (b) Universität Ulm.
 (a) Löwdin, P. O. Adv. Quantum Chem. 1965, 2, 213. (b) Pullman,
 B.; Pullman, A. Adv. Heterocycl. Chem. 1971, 13, 77. (c) Topal, M. D.;
 Fresco, J. R. Nature (London) 1976, 263, 285.
 (3) For a review see, e.g.: Kwiatkowski, J. S.; Pullman, B. Adv. Heterocycl. Chem. 1975, 18, 199.